Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
bioRxiv ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38562770

RESUMO

The 22q11.2 deletion syndrome (22q11.2DS) is the most common microdeletion disorder. Why the incidence of 22q11.2DS is much greater than that of other genomic disorders remains unknown. Short read sequencing cannot resolve the complex segmental duplicon structure to provide direct confirmation of the hypothesis that the rearrangements are caused by non-allelic homologous recombination between the low copy repeats on chromosome 22 (LCR22s). To enable haplotype-specific assembly and rearrangement mapping in LCR22 regions, we combined fiber-FISH optical mapping with whole genome (ultra-)long read sequencing or rearrangement-specific long-range PCR on 24 duos (22q11.2DS patient and parent-of-origin) comprising several different LCR22-mediated rearrangements. Unexpectedly, we demonstrate that not only different paralogous segmental duplicon but also palindromic AT-rich repeats (PATRR) are driving 22q11.2 rearrangements. In addition, we show the existence of two different inversion polymorphisms preceding rearrangement, and somatic mosaicism. The existence of different recombination sites and mechanisms in paralogues and PATRRs which are copy number expanding in the human population are a likely explanation for the high 22q11.2DS incidence.

3.
Hum Brain Mapp ; 45(1): e26553, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38224541

RESUMO

22q11.2 deletion syndrome (22q11DS) is the most frequently occurring microdeletion in humans. It is associated with a significant impact on brain structure, including prominent reductions in gray matter volume (GMV), and neuropsychiatric manifestations, including cognitive impairment and psychosis. It is unclear whether GMV alterations in 22q11DS occur according to distinct structural patterns. Then, 783 participants (470 with 22q11DS: 51% females, mean age [SD] 18.2 [9.2]; and 313 typically developing [TD] controls: 46% females, mean age 18.0 [8.6]) from 13 datasets were included in the present study. We segmented structural T1-weighted brain MRI scans and extracted GMV images, which were then utilized in a novel source-based morphometry (SBM) pipeline (SS-Detect) to generate structural brain patterns (SBPs) that capture co-varying GMV. We investigated the impact of the 22q11.2 deletion, deletion size, intelligence quotient, and psychosis on the SBPs. Seventeen GMV-SBPs were derived, which provided spatial patterns of GMV covariance associated with a quantitative metric (i.e., loading score) for analysis. Patterns of topographically widespread differences in GMV covariance, including the cerebellum, discriminated individuals with 22q11DS from healthy controls. The spatial extents of the SBPs that revealed disparities between individuals with 22q11DS and controls were consistent with the findings of the univariate voxel-based morphometry analysis. Larger deletion size was associated with significantly lower GMV in frontal and occipital SBPs; however, history of psychosis did not show a strong relationship with these covariance patterns. 22q11DS is associated with distinct structural abnormalities captured by topographical GMV covariance patterns that include the cerebellum. Findings indicate that structural anomalies in 22q11DS manifest in a nonrandom manner and in distinct covarying anatomical patterns, rather than a diffuse global process. These SBP abnormalities converge with previously reported cortical surface area abnormalities, suggesting disturbances of early neurodevelopment as the most likely underlying mechanism.


Assuntos
Síndrome de DiGeorge , Transtornos Psicóticos , Feminino , Humanos , Adolescente , Masculino , Síndrome de DiGeorge/diagnóstico por imagem , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Transtornos Psicóticos/complicações , Substância Cinzenta/diagnóstico por imagem
4.
NPJ Genom Med ; 8(1): 17, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463940

RESUMO

Congenital heart disease (CHD) affecting the conotruncal region of the heart, occurs in 40-50% of patients with 22q11.2 deletion syndrome (22q11.2DS). This syndrome is a rare disorder with relative genetic homogeneity that can facilitate identification of genetic modifiers. Haploinsufficiency of TBX1, encoding a T-box transcription factor, is one of the main genes responsible for the etiology of the syndrome. We suggest that genetic modifiers of conotruncal defects in patients with 22q11.2DS may be in the TBX1 gene network. To identify genetic modifiers, we analyzed rare, predicted damaging variants in whole genome sequence of 456 cases with conotruncal defects and 537 controls, with 22q11.2DS. We then performed gene set approaches and identified chromatin regulatory genes as modifiers. Chromatin genes with recurrent damaging variants include EP400, KAT6A, KMT2C, KMT2D, NSD1, CHD7 and PHF21A. In total, we identified 37 chromatin regulatory genes, that may increase risk for conotruncal heart defects in 8.5% of 22q11.2DS cases. Many of these genes were identified as risk factors for sporadic CHD in the general population. These genes are co-expressed in cardiac progenitor cells with TBX1, suggesting that they may be in the same genetic network. The genes KAT6A, KMT2C, CHD7 and EZH2, have been previously shown to genetically interact with TBX1 in mouse models. Our findings indicate that disturbance of chromatin regulatory genes impact the TBX1 gene network serving as genetic modifiers of 22q11.2DS and sporadic CHD, suggesting that there are some shared mechanisms involving the TBX1 gene network in the etiology of CHD.

5.
Psychol Med ; : 1-10, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36987693

RESUMO

BACKGROUND: Neuropsychiatric disorders are common in 22q11.2 Deletion Syndrome (22q11DS) with about 25% of affected individuals developing schizophrenia spectrum disorders by young adulthood. Longitudinal evaluation of psychosis spectrum features and neurocognition can establish developmental trajectories and impact on functional outcome. METHODS: 157 youth with 22q11DS were assessed longitudinally for psychopathology focusing on psychosis spectrum symptoms, neurocognitive performance and global functioning. We contrasted the pattern of positive and negative psychosis spectrum symptoms and neurocognitive performance differentiating those with more prominent Psychosis Spectrum symptoms (PS+) to those without prominent psychosis symptoms (PS-). RESULTS: We identified differences in the trajectories of psychosis symptoms and neurocognitive performance between the groups. The PS+ group showed age associated increase in symptom severity, especially negative symptoms and general nonspecific symptoms. Correspondingly, their level of functioning was worse and deteriorated more steeply than the PS- group. Neurocognitive performance was generally comparable in PS+ and PS- groups and demonstrated a similar age-related trajectory. However, worsening executive functioning distinguished the PS+ group from PS- counterparts. Notably, of the three executive function measures examined, only working memory showed a significant difference between the groups in rate of change. Finally, structural equation modeling showed that neurocognitive decline drove the clinical change. CONCLUSIONS: Youth with 22q11DS and more prominent psychosis features show worsening of symptoms and functional decline driven by neurocognitive decline, most related to executive functions and specifically working memory. The results underscore the importance of working memory in the developmental progression of psychosis.

6.
Genes (Basel) ; 14(3)2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36980952

RESUMO

22q11.2 deletion syndrome (22q11.2DS) is the most common genomic disorder with an extremely broad phenotypic spectrum. The aim of our study was to investigate how often the additional variants in the genome can affect clinical variation among patients with the recurrent deletion. To examine the presence of additional variants affecting the phenotype, we performed microarray in 82 prenatal and 77 postnatal cases and performed exome sequencing in 86 postnatal patients with 22q11.2DS. Within those 159 patients where array was performed, 5 pathogenic and 5 likely pathogenic CNVs were identified outside of the 22q11.2 region. This indicates that in 6.3% cases, additional CNVs most likely contribute to the clinical presentation. Additionally, exome sequencing in 86 patients revealed 3 pathogenic (3.49%) and 5 likely pathogenic (5.81%) SNVs and small CNV. These results show that the extension of diagnostics with genome-wide methods can reveal other clinically relevant changes in patients with 22q11 deletion syndrome.


Assuntos
Síndrome de DiGeorge , Humanos , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/complicações , Fenótipo , Análise em Microsséries
7.
Mol Psychiatry ; 28(5): 2071-2080, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36869225

RESUMO

22q11.2 deletion is one of the strongest known genetic risk factors for schizophrenia. Recent whole-genome sequencing of schizophrenia cases and controls with this deletion provided an unprecedented opportunity to identify risk modifying genetic variants and investigate their contribution to the pathogenesis of schizophrenia in 22q11.2 deletion syndrome. Here, we apply a novel analytic framework that integrates gene network and phenotype data to investigate the aggregate effects of rare coding variants and identified modifier genes in this etiologically homogenous cohort (223 schizophrenia cases and 233 controls of European descent). Our analyses revealed significant additive genetic components of rare nonsynonymous variants in 110 modifier genes (adjusted P = 9.4E-04) that overall accounted for 4.6% of the variance in schizophrenia status in this cohort, of which 4.0% was independent of the common polygenic risk for schizophrenia. The modifier genes affected by rare coding variants were enriched with genes involved in synaptic function and developmental disorders. Spatiotemporal transcriptomic analyses identified an enrichment of coexpression between modifier and 22q11.2 genes in cortical brain regions from late infancy to young adulthood. Corresponding gene coexpression modules are enriched with brain-specific protein-protein interactions of SLC25A1, COMT, and PI4KA in the 22q11.2 deletion region. Overall, our study highlights the contribution of rare coding variants to the SCZ risk. They not only complement common variants in disease genetics but also pinpoint brain regions and developmental stages critical to the etiology of syndromic schizophrenia.


Assuntos
Síndrome de DiGeorge , Esquizofrenia , Humanos , Adulto Jovem , Adulto , Esquizofrenia/genética , Síndrome de DiGeorge/genética , Encéfalo , Perfilação da Expressão Gênica , Sequenciamento Completo do Genoma
8.
J Clin Immunol ; 43(4): 794-807, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36735193

RESUMO

PURPOSE: Duplication of chromosome 22q11.2 due to meiotic non-allelic homologous recombination results in a distinct syndrome, chromosome 22q11.2 duplication syndrome that has some overlapping phenotypic features with the corresponding 22q11.2 deletion syndrome. Literature on immunologic aspects of the duplication syndrome is limited. We conducted a retrospective study of 216 patients with this syndrome to better define the key features of the duplication syndrome. METHODS: Single-center retrospective record review was performed. Data regarding demographics, clinical details, and immunological tests were compiled, extracted into a predetermined data collection form, and analyzed. RESULTS: This cohort comprised 113 (52.3%) males and 103 (47.7%) females. The majority (54.6%) of mapped duplications were between low copy repeat regions A-D (LCR22A to -D). Though T cell subsets were relatively preserved, switched memory B cells, immunoglobulins, and specific antibodies were each found to be decreased in a subset of the cohort. One-fifth (17/79, 21.5%) of patients had at least 2 low immunoglobulin values, and panhypogammaglobulinemia was found in 11.7% (9/79) cases. Four children were on regular immunoglobulin replacement therapy. Asthma and eczema were the predominant atopic symptoms in our cohort. CONCLUSION: Significant immunodeficiencies were observed in our cohort, particularly in B cells and antibodies. Our study expands the current clinical understanding and emphasizes the need of immunological studies and multidisciplinary approaches for these patients.


Assuntos
Síndrome de DiGeorge , Masculino , Criança , Feminino , Humanos , Síndrome de DiGeorge/genética , Estudos Retrospectivos , Deleção Cromossômica , Síndrome , Cromossomos
9.
Clin Genet ; 103(1): 109-113, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36075864

RESUMO

Prior studies have demonstrated that patients with chromosome 22q11.2 deletion syndrome (22q11.2DS) have lower platelet counts (PC) compared to non-deleted populations. They also have an increased mean platelet volume. The mechanism for this has been postulated to be haploinsufficiency of the GPIBB gene. We examined platelet parameters, deletion size and factors known to influence counts, including status of thyroid hormone and congenital heart disease (CHD), in a population of 825 patients with 22q11.2DS. We also measured surface expression of GPIB-IX complex by flow cytometry. The major determinant of PC was deletion status of GP1BB, regardless of surface expression or other factors. Patients with nested distal chromosome 22q11.2 deletions (those with GP1BB present) had higher PCs than those with proximal deletions where GP1BB is deleted. Patients with 22q11.2DS also demonstrated an accelerated PC decrease with age, occurring in childhood. These data demonstrate that genes within the proximal deletion segment drive PC differences in 22q11.2DS and suggest that PC reference ranges may need to be adjusted for age and deletion size in 22q11.2DS populations. Bleeding did not correlate with either platelet count or GPIb expression. Further studies into drivers of expression of GPIb and associations with severe thrombocytopenia and immune thrombocytopenia are needed to inform clinical care.


Assuntos
Síndrome de DiGeorge , Humanos , Síndrome de DiGeorge/genética
10.
Genes (Basel) ; 13(10)2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36292685

RESUMO

Learning and intellectual disabilities are hallmark features of 22q11.2 deletion syndrome. Data are limited, however, regarding influences on full-scale IQ (FSIQ). Here, we investigated possible 22q11.2 deletion parent-of-origin effects. In 535 individuals, we compared FSIQ (≥50), 481 with de novo and 54 with inherited 22q11.2 deletions. In the subsets with data available, we examined parent-of-origin effects on FSIQ. We used linear regression models to account for covariates. Median FSIQ was significantly higher in de novo vs. inherited deletions (77; range 50−116 vs. 67; range 50−96, p < 0.0001). Results remained significant using a regression model accounting for age at IQ testing, sex and cohort site. No significant parent-of-origin differences in FSIQ were observed for de novo deletions (n = 81, 63.0% maternal; p = 0.6882). However, median FSIQ was significantly lower in maternally than in paternally inherited familial deletions (65, range 50−86 vs. 71.5, range 58−96, respectively, p = 0.0350), with the regression model indicating an ~8 point decrement in FSIQ for this variable (p = 0.0061). FSIQ is higher on average in de novo than in inherited 22q11.2 deletions, regardless of parental origin. However, parent-of-origin appears relevant in inherited deletions. The results have potential clinical implications with further research needed to delineate possible actionable mechanisms.


Assuntos
Síndrome de DiGeorge , Deficiência Intelectual , Humanos , Síndrome de DiGeorge/genética , Deleção Cromossômica , Deficiência Intelectual/genética , Cromossomos
11.
Genes (Basel) ; 13(9)2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-36140835

RESUMO

The most prevalent microdeletion in the human population occurs at 22q11.2, a region rich in chromosome-specific low copy repeats (LCR22s). The structure of this region has eluded characterization due to a combination of size, regional complexity, and haplotype diversity. To further complicate matters, it is not well represented in the human reference genome. Most individuals with 22q11.2 deletion syndrome (22q11.2DS) carry a de novo, hemizygous deletion approximately 3 Mbp in size occurring by non-allelic homologous recombination (NAHR) mediated by the LCR22s. The ability to fully delineate an individual's 22q11.2 regional structure will likely be important for studies designed to assess an unaffected individual's risk for generating rearrangements in germ cells, potentially leading to offspring with 22q11.2DS. Towards understanding these risk factors, optical mapping has been previously employed to successfully elucidate the structure and variation of LCR22s across 30 families affected by 22q11.2DS. The father in one of these families carries a t(11;22)(q23;q11) translocation. Surprisingly, it was determined that he is the parent-of-deletion-origin. NAHR, which occurred between his der(22) and intact chromosome 22, led to a 22q11.2 deletion in his affected child. The unaffected sibling of the proband with 22q11.2DS inherited the father's normal chromosome 22, which did not aberrantly recombine. This unexpected observation definitively shows that haplotypes that engage in NAHR can also be inherited intact. This study is the first to identify all structures involving a rearranged chromosome 22 that also participates in NAHR leading to a 22q11.2 deletion.


Assuntos
Síndrome de DiGeorge , Alelos , Criança , Síndrome de DiGeorge/genética , Recombinação Homóloga/genética , Humanos , Masculino , Pais , Duplicações Segmentares Genômicas , Translocação Genética/genética
12.
J Pediatr Gastroenterol Nutr ; 75(2): e8-e14, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35641891

RESUMO

OBJECTIVES: 22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal microdeletion syndrome and has a multisystemic presentation including gastrointestinal features that have not yet been fully described. Our aim was to examine lifetime gastrointestinal problems in a large cohort of patients with 22q11.2DS. METHODS: All patients followed in the 22q and You Center at the Children's Hospital of Philadelphia (n = 1421) were retrospectively screened for: 1) age ≥ 17 years, 2) documented chromosomal microdeletion within the 22q11.2 LCR22A-LCR22D region, and 3) sufficient clinical data to characterize the adult gastrointestinal phenotype. Gastrointestinal problems in childhood, adolescence, and adulthood were summarized. Statistical association testing of symptoms against other patient characteristics was performed. RESULTS: Included patients (n = 206; 46% female; mean age, 27 years; median follow-up, 21 years) had similar clinical characteristics to the overall cohort. Genetic distribution was also similar, with 96% having deletions including the critical LCR22A-LCR22B segment (95% in the overall cohort). Most patients experienced chronic gastrointestinal symptoms in their lifetime (91%), but congenital gastrointestinal malformations (3.5%) and gastrointestinal autoimmune diseases (1.5%) were uncommon. Chronic symptoms without anatomic or pathologic abnormalities represented the vast burden of illness. Chronic symptoms in adulthood are associated with other chronic gastrointestinal symptoms and psychiatric comorbidities ( P < 0.01) but not with deletion size or physiologic comorbidities ( P > 0.05). One exception was increased nausea/vomiting in hypothyroidism ( P = 0.002). CONCLUSIONS: Functional gastrointestinal disorders (FGIDs) are a common cause of ill health in children and adults with 22q11.2DS. Providers should consider screening for the deletion in patients presenting with FGIDs and associated comorbidities such as neuropsychiatric illness, congenital heart disease, and palatal abnormalities.


Assuntos
Síndrome de DiGeorge , Gastroenteropatias , Cardiopatias Congênitas , Comorbidade , Síndrome de DiGeorge/complicações , Síndrome de DiGeorge/genética , Feminino , Gastroenteropatias/complicações , Gastroenteropatias/genética , Humanos , Masculino , Fenótipo , Estudos Retrospectivos
13.
Genes (Basel) ; 14(1)2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36672801

RESUMO

Interruption of the aortic arch (IAA) is a rare but life-threatening congenital heart defect if not corrected in the neonatal period. IAA type B is highly correlated with 22q11.2 deletion syndrome (22q11.2DS); approximately 50% of patients with IAA type B also have 22q11.2DS (Peyvandi et al.; Goldmuntz et al.). Early identification and repair of IAA can prevent severe morbidity and death. However, IAA is challenging to identify prenatally, or even in the neonatal period. In this study, we examined infants with IAA, diagnosed during pregnancy and prior to discharge (PPTD) from the birth hospital vs. those diagnosed following discharge (FD) from the newborn nursery. Our goals were to determine: (1) if early diagnosis improved outcomes; and (2) if patients with IAA and without 22q11.2DS had similar outcomes. In total, 135 patients with a diagnosis of 22q11.2DS and IAA were ascertained through the 22q and You Center at the Children's Hospital of Philadelphia (CHOP). The examined outcomes included: timing of diagnosis; age at diagnosis (days); hospital length of stay (LOS); duration of intensive care unit (ICU) stay; mechanical ventilation (days); duration of inotrope administration (days); year of surgical intervention; birth hospital trauma level; and overall morbidity. These outcomes were then compared with 40 CHOP patients with IAA but without 22q11.2DS. The results revealed that the PPTD neonates had fewer days of intubation, inotrope administration, and hospital LOS when compared to the FD group. The outcomes between deleted and non-deleted individuals with IAA differed significantly, in terms of the LOS (40 vs. 39 days) and time in ICU (28 vs. 24 days), respectively. These results support the early detection of 22q11.2DS via prenatal screening/diagnostics/newborn screening, as IAA can evade routine prenatal ultrasound and postnatal pulse oximetry. However, as previously reported in patients with 22q11.2DS and congenital heart disease (CHD), patients with 22q11.2DS tend to fare poorer compared to non-deleted neonates with IAA.


Assuntos
Síndrome de DiGeorge , Cardiopatias Congênitas , Lactente , Recém-Nascido , Criança , Gravidez , Feminino , Humanos , Síndrome de DiGeorge/diagnóstico , Síndrome de DiGeorge/genética , Estudos Retrospectivos , Aorta Torácica/anormalidades , Alta do Paciente , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética
14.
Hum Brain Mapp ; 43(1): 300-328, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33615640

RESUMO

The Enhancing NeuroImaging Genetics through Meta-Analysis copy number variant (ENIGMA-CNV) and 22q11.2 Deletion Syndrome Working Groups (22q-ENIGMA WGs) were created to gain insight into the involvement of genetic factors in human brain development and related cognitive, psychiatric and behavioral manifestations. To that end, the ENIGMA-CNV WG has collated CNV and magnetic resonance imaging (MRI) data from ~49,000 individuals across 38 global research sites, yielding one of the largest studies to date on the effects of CNVs on brain structures in the general population. The 22q-ENIGMA WG includes 12 international research centers that assessed over 533 individuals with a confirmed 22q11.2 deletion syndrome, 40 with 22q11.2 duplications, and 333 typically developing controls, creating the largest-ever 22q11.2 CNV neuroimaging data set. In this review, we outline the ENIGMA infrastructure and procedures for multi-site analysis of CNVs and MRI data. So far, ENIGMA has identified effects of the 22q11.2, 16p11.2 distal, 15q11.2, and 1q21.1 distal CNVs on subcortical and cortical brain structures. Each CNV is associated with differences in cognitive, neurodevelopmental and neuropsychiatric traits, with characteristic patterns of brain structural abnormalities. Evidence of gene-dosage effects on distinct brain regions also emerged, providing further insight into genotype-phenotype relationships. Taken together, these results offer a more comprehensive picture of molecular mechanisms involved in typical and atypical brain development. This "genotype-first" approach also contributes to our understanding of the etiopathogenesis of brain disorders. Finally, we outline future directions to better understand effects of CNVs on brain structure and behavior.


Assuntos
Encéfalo , Variações do Número de Cópias de DNA , Imageamento por Ressonância Magnética , Transtornos Mentais , Transtornos do Neurodesenvolvimento , Neuroimagem , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Humanos , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/genética , Transtornos Mentais/patologia , Estudos Multicêntricos como Assunto , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia
15.
PLoS Comput Biol ; 17(11): e1009594, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34762648

RESUMO

The growing number of next-generation sequencing (NGS) data presents a unique opportunity to study the combined impact of mitochondrial and nuclear-encoded genetic variation in complex disease. Mitochondrial DNA variants and in particular, heteroplasmic variants, are critical for determining human disease severity. While there are approaches for obtaining mitochondrial DNA variants from NGS data, these software do not account for the unique characteristics of mitochondrial genetics and can be inaccurate even for homoplasmic variants. We introduce MitoScape, a novel, big-data, software for extracting mitochondrial DNA sequences from NGS. MitoScape adopts a novel departure from other algorithms by using machine learning to model the unique characteristics of mitochondrial genetics. We also employ a novel approach of using rho-zero (mitochondrial DNA-depleted) data to model nuclear-encoded mitochondrial sequences. We showed that MitoScape produces accurate heteroplasmy estimates using gold-standard mitochondrial DNA data. We provide a comprehensive comparison of the most common tools for obtaining mtDNA variants from NGS and showed that MitoScape had superior performance to compared tools in every statistically category we compared, including false positives and false negatives. By applying MitoScape to common disease examples, we illustrate how MitoScape facilitates important heteroplasmy-disease association discoveries by expanding upon a reported association between hypertrophic cardiomyopathy and mitochondrial haplogroup T in men (adjusted p-value = 0.003). The improved accuracy of mitochondrial DNA variants produced by MitoScape will be instrumental in diagnosing disease in the context of personalized medicine and clinical diagnostics.


Assuntos
Big Data , DNA Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Aprendizado de Máquina , Genes Mitocondriais , Humanos
16.
Genes (Basel) ; 12(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34356046

RESUMO

Conotruncal defects with normally related great vessels (CTD-NRGVs) occur in both patients with and without 22q11.2 deletion syndrome (22q11.2DS), but it is unclear to what extent the genetically complex etiologies of these heart defects may overlap across these two groups, potentially involving variation within and/or outside of the 22q11.2 region. To explore this potential overlap, we conducted genome-wide SNP-level, gene-level, and gene set analyses using common variants, separately in each of five cohorts, including two with 22q11.2DS (N = 1472 total cases) and three without 22q11.2DS (N = 935 total cases). Results from the SNP-level analyses were combined in meta-analyses, and summary statistics from these analyses were also used in gene and gene set analyses. Across all these analyses, no association was significant after correction for multiple comparisons. However, several SNPs, genes, and gene sets with suggestive evidence of association were identified. For common inherited variants, we did not identify strong evidence for shared genomic mechanisms for CTD-NRGVs across individuals with and without 22q11.2 deletions. Nevertheless, several of our top gene-level and gene set results have been linked to cardiogenesis and may represent candidates for future work.


Assuntos
Estudo de Associação Genômica Ampla , Cardiopatias Congênitas/genética , Deleção Cromossômica , Síndrome de DiGeorge/complicações , Síndrome de DiGeorge/genética , Testes Genéticos , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único , Estados Unidos
17.
Brain Behav ; 11(8): e2221, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34213087

RESUMO

Intelligence quotient (IQ) testing is standard for evaluating cognitive abilities in genomic studies but requires professional expertise in administration and interpretation, and IQ scores do not translate into insights on implicated brain systems that can link genes to behavior. Individuals with 22q11.2 deletion syndrome (22q11.2DS) often undergo IQ testing to address special needs, but access to testing in resource-limited settings is challenging. The brief Penn Computerized Neurocognitive Battery (CNB) provides measures of cognitive abilities related to brain systems and can screen for cognitive dysfunction. To examine the relation between CNB measures and IQ, we evaluated participants with the 22q11.2DS from Philadelphia and Tel Aviv (N = 117; 52 females; mean age 18.8) who performed both an IQ test and the CNB with a maximum of 5 years between administrations and a subsample (n = 24) who had both IQ and CNB assessments at two time points. We estimated domain-level CNB scores using exploratory factor analysis (including bifactor for overall scores) and related those scores (intraclass correlations (ICCs)) to the IQ scores. We found that the overall CNB accuracy score showed similar correlations between time 1 and time 2 as IQ (0.775 for IQ and 0.721 for CNB accuracy), correlated well with the IQ scores (ICC = 0.565 and 0.593 for time 1 and time 2, respectively), and correlated similarly with adaptive functioning (0.165 and 0.172 for IQ and CNB, respectively). We provide a crosswalk (from linear equating) between standardized CNB and IQ scores. Results suggest that one can substitute the CNB for IQ testing in future genetic studies that aim to probe specific domains of brain-behavior relations beyond IQ.


Assuntos
Aracnodactilia , Síndrome de DiGeorge , Síndrome de Marfan , Adolescente , Feminino , Humanos , Inteligência/genética , Testes de Inteligência
18.
JAMA Psychiatry ; 78(8): 911-921, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34009292

RESUMO

Importance: Discovery of mechanisms that underlie variable penetrance for neuropsychiatric illness in the context of genetic variants that carry elevated risk can advance novel treatment approaches for these disorders. Objective: To test the hypothesis that mitochondrial compensation is associated with the variable penetrance of schizophrenia in the 22q11.2 deletion syndrome (22q11DS). Design, Setting, and Participants: This case-control study compared measures of mitochondrial function and the expression of related genes in 14 induced pluripotent stem cell-derived neurons from typically developing control individuals (6 lines) and from adults with 22q11DS (8 lines). The individuals with 22q11DS included 2 groups, those carrying a diagnosis of schizophrenia and those without this diagnosis (4 lines each). Similar measures were made of lymphoblastic cells lines (LCLs) from a separate group of adults with 22q11DS with (10 lines) or without (8 lines) schizophrenia. The study included samples derived from a clinical setting. The induced pluripotent stem cell lines were derived from individuals with 22q11DS with or without a diagnosis of schizophrenia at Stanford University. The LCLs were from adults within the 22q and You Center at the Children's Hospital of Philadelphia. Data were analyzed between July 1, 2019, and January 24, 2021. Main Outcomes and Measures: Total adenosine triphosphate (ATP), oxidative phosphorylation (OXPHOS) complex activity, and messenger RNA expression via reverse transcription-polymerase chain reaction of selected genes encoding for mitochondrial proteins. Results: Study participants included men and women aged 18 to 37 years. Of 32 participants, the mean (SD) age of men was 27 (1.9) years and of women was 29 (1.2) years. Replicating a previous study, neurons from the 22q11DS and schizophrenia (22q+Sz) group had reduced ATP levels (mean [SD], 15.6 [1.5] vs 21.9 [1.4]; P = .02) and reduced OXPHOS activity (ie, complex I; 1.51 [0.1] vs 1.89 [0.1]; P = .01). These deficits were not present in neurons from individuals with 22q11DS without schizophrenia (22q[-]Sz). In this group, the expression of multiple genes encoding OXPHOS subunits was significantly upregulated. For example, compared with control individuals, NDUFV2 expression was increased by 50% in the 22q(-)Sz group (P < .001) but not significantly changed in the 22q+Sz group. Expression of genes driving mitochondrial biogenesis, including PGC1α, showed a similar pattern of upregulation in the 22q(-)Sz group compared with the control and the 22q+Sz groups. Stimulation of mitochondrial biogenesis normalizes the ATP deficit seen in 22q+Sz neurons. Finally, using LCLs from a separate group of adults with 22q11DS, evidence for enhanced mitochondrial biogenesis was again found in the 22q(-)Sz group. Conclusions and Relevance: In this study, an increase in mitochondrial biogenesis and function was associated with the absence of schizophrenia in neurons and LCLs from individuals with 22q11DS, but the deficit in the 22q+Sz group was reversible by agents that enhance mitochondrial biogenesis. Enhancement of mitochondrial biogenesis may provide a targetable opportunity for treatment or prevention of this disorder in individuals with 22q11DS.


Assuntos
Síndrome de DiGeorge/genética , Mitocôndrias/fisiologia , Biogênese de Organelas , Esquizofrenia/genética , Adolescente , Adulto , Estudos de Casos e Controles , Linhagem Celular , Feminino , Regulação da Expressão Gênica/genética , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Mitocôndrias/genética , Neurônios , Penetrância , Fatores de Risco , Adulto Jovem
19.
J Psychiatr Res ; 138: 319-325, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33894539

RESUMO

BACKGROUND: The presentation of neurogenetic disorders such as 22q11.2 Deletion Syndrome (22q11.2DS) includes broad neuropsychiatric phenotypes that impact functioning and require assessment and treatment. Like in non-syndromal neuropsychiatric disorders, there is heterogeneity in symptom severity and illness course. The study of risk and resilience in the general population has benefited from measurement tools that parse heterogeneity and guide treatment. Suitability of such tools in neurogenetic disorders has not been examined and is essential to establish as prerequisite for examining whether similar processes modulate psychopathology in these populations. METHOD: We applied the Risk & Resilience Battery assessing intrapersonal, interpersonal, and environmental domains, to 80 patients with 22q11.2DS, 30 from Philadelphia, USA and 50 from Tel-Aviv, Israel. We also evaluated global functioning and obtained self-reports of anxiety and depression. We examined the Risk & Resilience Battery reliability for each factor and used partial correlations to examine relations between the Risk & Resilience Battery factors and clinical measures. RESULTS: Across samples, items within each risk and resilience factor showed good to excellent internal consistency. Higher scores on peer victimization, emotion dysregulation, and hostile close relationships were related to reports of anxiety and depression. Higher levels of self-reliance related to lower anxiety while greater security in close relationships related to lower depression. CONCLUSION: The Risk & Resilience Battery can be applied to 22q11.2DS samples and advance Gene X Environment research and interventions.


Assuntos
Aracnodactilia , Síndrome de DiGeorge , Síndrome de Marfan , Humanos , Israel , Reprodutibilidade dos Testes
20.
Mol Psychiatry ; 26(8): 4496-4510, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32015465

RESUMO

Schizophrenia occurs in about one in four individuals with 22q11.2 deletion syndrome (22q11.2DS). The aim of this International Brain and Behavior 22q11.2DS Consortium (IBBC) study was to identify genetic factors that contribute to schizophrenia, in addition to the ~20-fold increased risk conveyed by the 22q11.2 deletion. Using whole-genome sequencing data from 519 unrelated individuals with 22q11.2DS, we conducted genome-wide comparisons of common and rare variants between those with schizophrenia and those with no psychotic disorder at age ≥25 years. Available microarray data enabled direct comparison of polygenic risk for schizophrenia between 22q11.2DS and independent population samples with no 22q11.2 deletion, with and without schizophrenia (total n = 35,182). Polygenic risk for schizophrenia within 22q11.2DS was significantly greater for those with schizophrenia (padj = 6.73 × 10-6). Novel reciprocal case-control comparisons between the 22q11.2DS and population-based cohorts showed that polygenic risk score was significantly greater in individuals with psychotic illness, regardless of the presence of the 22q11.2 deletion. Within the 22q11.2DS cohort, results of gene-set analyses showed some support for rare variants affecting synaptic genes. No common or rare variants within the 22q11.2 deletion region were significantly associated with schizophrenia. These findings suggest that in addition to the deletion conferring a greatly increased risk to schizophrenia, the risk is higher when the 22q11.2 deletion and common polygenic risk factors that contribute to schizophrenia in the general population are both present.


Assuntos
Síndrome de DiGeorge , Transtornos Psicóticos , Esquizofrenia , Adulto , Estudos de Casos e Controles , Estudos de Coortes , Síndrome de DiGeorge/genética , Humanos , Esquizofrenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA